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Abstract: 
The present paper deals with a mathematical model of blood flow through narrow circular tube. The model 

consists of a core region of suspension of all the erythrocytes assumed to be a power law fluid and a peripheral 

cell-depleted layer of plasma as a Newtonian fluid. The system of differential equations has been solved 

analytically. The expressions for velocity profile, Bluntness parameter, flow rate, the ratio of core hematocrit to 

discharge hematocrit (Hc/HD), apparent viscosity (µapp), and the ratio of tube hematocrit to discharge 

hematocrit (HT/HD) and shear stress at the wall have obtained. Some of them have been discussed through 

graphs. 
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I. Introduction: 
Blood is composed of two major components; 

the cellular component and the plasma component. 

In an average adult, the blood volume is 

approximately 5 litre of which approximately 55% 

to 60% is plasma and the remaining portion is 

cellular. More than 99% of the cellular component is 

composed of red blood cells. The most common 

way to quantify the percent of blood that is cellular 

is by quantifying the packed red blood cell volume, 

which is termed the hematocrit. Hematocrit or red 

blood cell (RBC) concentration and the shear rate 

are the principal independent variables for 

describing the apparent viscosity of blood and other 

RBC suspension. The formation of RBC aggregates 

at low shear rates may affect blood flow in the 

microcirculation. The experimental evidence 

suggests that hematocrit distribution in the 

microvasculature is not uniform: RBCs tend to 

concentrate near the center of the vessel, thus 

forming and RBC-depleted plasma layer near the 

wall. RBCs are non-uniformly distributed not only 

within, but also among the micro vessels. The 

heterogeneous distribution of RBCs and other blood 

cells has important implications for microvascular 

hemodynamic and molecular transport. 

The two important mechanisms that cause non-

proportional distribution of RBCs and plasma in the 

microcirculation are "cell screening and "plasma 

skimming". The cell screening mechanism 

(Cokelet,s 1976 [1]; Pries et al., 1981 [2]), involves 

direct cell-cell and cell wall-fluid mechanical 

interactions near the orifice of a side branch. 

These interactions cause the RBC trajectories to 

deviate from the fluid stream lines; which would 

exist in the absence of the cells. The plasma 

skimming mechanism is related to the non uniform 

distribution of RBCs at the inlet cross- section of 

arteriolar bifurcations, in particular the formation of 

a cell-depleted layer near the vascular wall (Tateishi 

et al., 1994 [3]; Yamaguchi et. al, 1992
 
[4]). For 

the "ideal" plasma skimming case, when the flow 

fraction in the branch is less than 0.5 the discharge 

hematocrit in the branch becomes lower than in the 

parent vessel. 

When blood flows through tubes, the two-phase 

nature of blood as a suspension becomes important 

as the diameter of the red blood cell (RBC) becomes 

comparable to the tube diameter. The following are 

some of the effects observed in vitro and in vivo: 

(i) Fahraeus - Lindqvist effect: dependence of 

apparent viscosity on tube diameter; 

(ii) Fahraeus effect: dependence of tube or 

vessel hematocrit on tube diameter; 

(iii) Existence of a cell-free or cell-depleted 

layer near the wall; 

(iv) Blunt velocity profile; 

(v) Phase separation effect: disproportionate 

distribution of red blood cells and plasma 

at vessel bifurcation. 
 

Fournier
 

[5] have been developed several 

models to interpret these effects. Pries et al.
 
[6] 

reviewed biophysical aspects of micro-vascular 

blood flow in vivo as well as in vitro. 

Nair et. al. [7] used a two-phase model for the 

blood in modeling transport of oxygen in arterioles. 

They considered a cell-rich cone surrounded by a 

cell-free plasma layer. 

In the cell-rich core, the radial hematocrit 

distribution was expressed as a power law profile 

with maximum at the center of the tube. The 

thickness of the cell-free layer was chosen on the 

basis of geometrical consideration in terms of RBC 

size and radius of the tube. However, the 
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dependence of the thickness on the cell free layer on 

hematocrit was not taken into account. Seshadri 

and Jaffrin
 
[8] modeled the outer layer as cell-

depleted having a lower hematocrit than in the core. 

The apparent viscosity and the mean tube hematocrit 

were taken from the measurements obtained in glass 

tubes. The concentration of RBCs in the cell-

depleted layer was assumed to be 50% of that in the 

core. Gupta et. al.,
 
[9] divided the outer layer into a 

cell-free plasma layer and cell-depleted layer. In 

both these studies, the velocity profile in the core 

was assumed to follow a power law. Pries et al. 

[10,11,12] derived empirical relationship of the 

relative apparent viscosity and mean tube hematocrit 

as parametric functions of tube diameter and 

discharge hematocrit from in vitro Pries et al. 

[10,12] and in vivo Pries et al. [11] data. 

Numerical modeling can provide information 

for various hematocrits. Hematocrit is known to 

affect the viscous properties of blood (Merril, E.W. 

[13] and Chien, S. et. al. [14]) 
 
 and physiological 

abnormalities in hematocrit are associated with 

diseases which alter the blood composition ( Chien, 

S. et. al. [14]; Halvorsen, S.[15]; Skovborg, R. 

[16] and Leblond, P.F. et. al. [17]) 
 
. For example, 

over production of red blood cells (policythemia) 

increases whole blood viscosity, while iron 

deficiency (anemia) decreases blood viscosity. 

Changes in blood composition may influence wall 

shear stress patterns in the arterial system, which 

may in turn play a role in the sequence of arterial 

diseases. Effect of hematocrit on wall shear rate in 

oscillatory flow has been studied by Kathleen and 

John
 
[18] and found that increase in hematocrit 

produced a decrease in the peak wall shear rate in 

both the straight and curved artery models and a 

corresponding decrease in wall shear rate reversal 

on the inside wall of the curved artery model. 

Das et al.,
 

[19] considered the effect of 

nonaxisymmetric hematocrit distribution on non-

Newtonian blood flow in small tubes. Eccentric 

hematocrit distribution is considered such that the 

axis of the cylindrical core region of red cell 

suspension is parallel to the axis of the blood vessel 

but not coincident. Human blood is described by 

Quemade's rheological model and cat blood is 

described by Casson's model. Velocity distribution, 

shear stress, apparent viscosity and Fahraeus effect 

have been calculated numerically. These are 

strongly influenced by the eccentricity factor, the 

core radius and the tube hematocrit. Maithili 

Sharan and Popel [20] proposed a two-phase 

model for flow of blood in narrow tubes with 

increased effective viscosity near the wall. The 

model consists of a central core of suspended 

erythrocytes and a cell-free layer surrounding the 

core. A system of nonlinear equation is solved 

numerically to estimate bluntness, core radius and 

core hematocrit. Variation of apparent viscosity and 

tube hematocrit with the tube diameter and the 

discharge hematocrit in vitro have been discussed. 

Davod Alizadehard et al., [21] investigated the 

deformation of RBCs in micro vessels for a variety 

of vessel diameter (8-50m), Hematocrit     (20-

45%) and shear rates (20-150S
-1

) and comparing the 

apparent viscosity with experimental results.  

 The aim of the present investigation is to 

study the flow of blood as a two-phase model. The 

behavior of blood is considered as power law in core 

region and cell-depleted layer as Newtonian fluid. 

Analytical expressions for velocity profile, 

bluntness parameter, flow rate, ratio of core 

hematocrit to discharge hematocrit (HC/HD), 

apparent viscosity and ratio of tube hematocrit to 

discharge hematocrit (HT/HD), shear stress at the 

wall have obtained. The results are discussed 

graphically. 

 

II. Mathematical Analysis: 
The geometry of the model is shown in Fig.1. 

The steady laminar two layer model for the blood 

flow within a cylindrical tube of radius R consisting 

a central core of radius rh and effective viscosity µc 

which contains an erythrocyte suspension of 

uniform hematocrit Hc and a cell-free layer outside 

the core containg plasma with an effective viscosity 

µo. The blood is considered as non-Newtonian 

power law fluid in core region and plasma is 

Newtonian fluid in cell free layer. 

 

 

 

R 

 

 

 

µ0,u0 

rh µc,uc 

 

Cell free layer 

Core 



S.R. Verma Int. Journal of Engineering Research and Applications                                www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 12( Part 6), December 2014, pp.01-10 

 www.ijera.com                                                                                                                                 3 | P a g e  

Fig.1. Geometry of the flow model 

 

2.1 Governing equation and boundary conditions:- 

 The constitutive equation of motion for incompressible steady fully developed flow in a tube reduces 

to: 
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for the central core with red blood cells and 
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for the cell-free layer, where uC and u0 are the velocities in the cone and plasma layer respectively, p is the 

hydraulic pressure and r and z represent the radial and axial direction in the tube. 

 The boundary conditions are: 

(a) the velocity gradient varnishes along the axis of the tube: 
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(b) No slip condition is assumed at the wall; 

 (4)Rrat0u 0   

(c) The velocity and shear stress are continuous at the interface of plasma and the core: 
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2.2 Solution of the problem 

 The solution of equation (1) and (2), subject to the boundary conditions (3) - (6) is given by 
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α=1 for n = 1 (Newtonian fluid) and 
z

p




 is pressure gradient along the length of the tube. 

 Velocity in the core )(cu  can be expressed as 
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The parameter B is the bluntness of the velocity profile. When n = 1 and 1̀
0c

 Bthen  

which give the velocity profile becomes parabolic throughout the entire cross-section of the tube and fluid in 

both layer in Newtonian. 

The volumetric flow rate of the blood is given by 

 






0

1

0

2

c

2 (12)d)(uR2d)(uR2Q  

 The expression for the flow rate Q is obtained as the evaluation of integrals in (12) with the velocity 

equations (7) and (8) as: 
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 Mass balance of the cells in the tube is defined as: 
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 Where HD is the discharge hematocrit and h () is hematocrit function related to core hematocrit  HC as: 
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Using (7) and (8) in (14) with (15) we obtain  
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The ratio HC/HD can be obtain from equations (13) and 16) as: 
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Equation (13) can be written as: 
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Where app   is the apparent viscosity of total tube flow given by 
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The tube hematocrit HT is defined as:  
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Using equation (15) in (20), we get 
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From equation (10) and (22) the maximum velocity Umax can be expressed as: 
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The shear stress at the wall is defined as 
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 Using equation (18), and (22) in (24), the expression for the shear stress at the wall is obtained as 
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 Equation (17), (19) and (21) express CH , app   and TH  in terms of λ, 0, DH and C .  

 

III. Results and Discussion:- 
In order to discuss the results of the theoretical model proposed in the study, the analytical expression for 

velocity profile, Bluntness parameter, flow rate, the ratio of core hematocrit to discharge hematocrit  DC /HH , 

apparent viscosity, the tube hematocrit to discharge hematocrit  DT /HH  and shear stress at the wall have 

been obtained. It may be noted that if we put n=1 in present model the results are obtained for both layer is 

Newtonian. 

 To discuss the problem, the Bluntness, B; ratio 
D

H
c

H / ,apparent viscosity, µapp and ratio 

D
H

T
H / obtained analytically in equation (11), (17), (19) and (21) respectively have been plotted in Figures 

2 to 8. For numerical calculations we take 
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 The parameters B in equation (11) is the bluntness of the velocity profile in core. The parameter 

depends on the thickness of the cell-free layer. Figure 2 show the variation of bluntness parameter with tub 

radius R for n = 3/4 and n = 5/4. It is observe that the numerical values of B for n=5/4 are less than that for n = 

3/4. Bluntness parameter B is plotted in Figure 3 with λ for different values of non-Newtonian parameter. For n 

= 3/4 bluntness parameter B first decreases upto λ= 0.2 and then increases upto λ = 0.6 and again decreases upto 

λ = 1.                     

 Bluntness parameters profile is near about similar for n = 1, and n= 5/4 but the values for n = 1 in 

greater than that of n =5/4. 

 Figures 4 and 5 show are variation of ratio DC /HH  with λ and with R for different values of n. 

DC /HH decreases with λ fastly upto λ= 0.4 and then decreases slowly for n = 1 and n = 5/4 but increase upto 

λ=0.5 then decrease fastly upto λ = 0.6 and again increase. From figure 4 it is observe that when n < 1 the 

character in very different. Figure 5 shown that DC /HH increases fastly upto R= 125m and then slow effect is 

obtained for n = 3/4 whereas DC /HH  decreases very slowly for n = 5/4. Numerical values for n= 5/4 of 

DC /HH are greater than that for n = 3/4. 
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 The variation of apparent viscosity (µapp) with λ for different value of non-Newtonian parameter n is 

shown in figure 6. Mapp increase slowly with λ upto 0.6 and fastly for n = 1 and n = 5/4 but the character is very 

different for n = 3/4. The trend of figure are same for n = 1 and n = 5/4 but numerical values for n = 5/4 for 

different λ are greater than that of n = 1.     

 From figure 7, it is observed that the ratio DT HH /  increase with λ for n = 1 and n = 5/4 in similar 

trend but increases fastly upto λ= 0.4 then decreases upto λ= 0.7 and again increases. 

 Effect of tube radius R on  DT HH / is plotted in Figure 8 for n = 3/4, 5/4. DT HH /  increase with R 

for n = 3/4 and decreases with R for n = 5/4. Numerical values for n = 5/4 of  DT HH /  are greater than that for 

n = 5/4. 

 

 
 

Fig. 2: Variation of Bluntness parameter (B) with R 
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Fig.3: Variation of Bluntness parameter (B) with λ 

 

 
 

Fig.4: Variation of HC/HD with λ 
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Fig. 5: Variation of HC/HD with R 

 

 
Fig. 6: Variation of apparent viscosity (µapp) with λ 

 



S.R. Verma Int. Journal of Engineering Research and Applications                                www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 12( Part 6), December 2014, pp.01-10 

 www.ijera.com                                                                                                                                 9 | P a g e  

 
Fig.7: Variation of HT/HD with λ 

 

 
Fig. 8: Variation of HT/HD with R 
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